окружающая среда — Pandemic Science Maps http://pandemicsciencemaps.org Mon, 06 Jul 2020 20:38:40 +0000 ru-RU hourly 1 https://wordpress.org?v=5.5.1 https://i0.wp.com/pandemicsciencemaps.org/wp-content/uploads/2020/04/cropped-logo_psm-b-1.png?fit=32%2C32 окружающая среда — Pandemic Science Maps http://pandemicsciencemaps.org 32 32 176006993 Жара и вирусы http://pandemicsciencemaps.org/ru/summer-heat-ru?utm_source=rss&utm_medium=rss&utm_campaign=summer-heat-ru Sat, 13 Jun 2020 19:58:44 +0000 http://pandemicsciencemaps.org?p=850 Над материалом работали Полина Рогачева, Алла Лосева

Этой весной пандемия заставила нас задаться вопросом: исчезнет ли новый коронавирус с приходом тепла? Ведь другие инфекции, которые поражают дыхательные пути, как грипп и простуды, гораздо реже проявляются в тёплый период. Отчасти это связано с тем, что частицы респираторных вирусов дольше держатся в зимнем сухом воздухе, не падая вниз с каплями воды – а значит, у людей больше времени, чтобы вдохнуть их. Ещё сухой и холодный воздух повреждает клетки, которые выстилают дыхательные пути, а тёплый влажный воздух, напротив, поддерживает там слой слизи, которая защищает от вредоносных частиц (Moriyama, Hugentobler, and Iwasaki 2020). 

Основным путём передачи нового коронавируса SARS-CoV-2 недавно был назван воздушно-капельный (Zhang et al. 2020). Однако на вопрос о затухании эпидемии летом исследования утвердительно не отвечают. На распространение вируса, по-видимому, в достаточной мере не влияют ни краткосрочные погодные изменения, ни долгосрочные климатические перемены, что подтверждается распространением пандемии даже в тёплых и влажных местностях.

Для вирусов вообще роль климата заключается не только в том, что он сказывается на выживании инфекций вне организма носителя, и не только в сезонном ослаблении иммунитета. Есть и отложенный эффект климата на распространение вирусов. Например, в связи с глобальным потеплением и вторжением человека в природу вирус Эбола может выйти за пределы нынешних очагов заражения и распространиться по Африке, в том числе перекинувшись на крупные транспортные узлы. Фактор глобального потепления в этом примере не основной, но климатические условия влияют на распространение инфекций через механизмы разного уровня.

Посмотрим, какие ещё темы в связи с погодными и климатическими изменениями поднимают исследователи эпидемий. Для обзора мы выполнили систематический поиск литературы в базе данных Scopus и построили карту публикаций на основе их списков литературы (см. Рисунок 1). Близость на карте и принадлежность к одному кластеру на этой карте означают, что публикации ссылаются на одни и те же работы – а значит, есть вероятность, что в статьях поднимаются схожие темы. Карта выполнена в программе VOSviewer.

Публикации дробятся на шесть кластеров:

  • цвета морской волны, слева вверху: вирусы, передаваемые клещами,
  • фиолетовый, слева внизу: малярия,
  • синий, в нижней части: главные обзоры о сезонности,
  • серый, внизу справа: грипп,
  • светло-голубой, по центру: изменения климата,
  • жёлтый, справа вверху: кишечные бактерии (не освещается в обзоре).
Рисунок 1. Карта библиографического сходства публикаций о влиянии климата на передачу вирусов
Цвет присвоен узлам в соответствии с автоматически выделенными кластерами. Связи означают, что в библиографиях публикаций есть одинаковые документы. Близость на карте и принадлежность к одному кластеру отражают вероятность, что в работах поднимаются схожие темы. Размер узла соответствует количеству цитирования публикации по данным Scopus. На карте отображены только связанные друг с другом документы (N = 1781). Кликните на рисунок, чтобы смотреть в полном размере (открывается в новом окне)

Кластер цвета морской волны: вирусы, передаваемые клещами

Кластер цвета морской волны сосредоточен на вирусах и инфекциях, вызывающих трансмиссивные болезни. Это болезни, которые передаются людям только от переносчика-насекомого (в основном это комары, клещи и мухи). На долю трансмиссивных болезней приходится более 17% всех инфекционных заболеваний и более 700,000 смертей ежегодно

В публикациях кластера обсуждаются вирусы, передаваемые клещами. В последние десятилетия возросло число случаев клещевого энцефалита среди людей, а его географический охват расширился до Северной и Южной Америки, Африки и ряда регионов Европы. Климат является одним из многих факторов, определяющих, какие виды клещей встречаются в данном географическом регионе (Estrada-Peña and de la Fuente 2014). Так для человека появляются новые риски встретиться с трансмиссивным заболеванием.

Климат влияет на распространение таких вирусов, как вирус Зика, лихорадка денге, малярия и клещевой боррелиоз (см. обзор Rogers and Randolph 2006). Например, когда повышается температура, клещи спускаются за влагой с верхних ярусов растительности, где они обычно обитают, и внизу заражают мелких грызунов, которые переносят вирус дальше. При этом если стоит засуха, то клещи предпочитают экономить влагу, не двигаясь и, соответственно, не передавая вирус другим носителям (Randolph and Storey 1999). Здесь фактор влажности оказывается важнее температурного.

В кластер также попали публикации, которые упоминают распространение вирусов летучими мышами и его сезонные закономерности (Olival and Hayman 2014).

Фиолетовый кластер: малярия

Малярия – наиболее важная и угрожающая человеку инфекция, которая передаётся от паразитов. Она приводит к более чем миллиону смертей в год (Greenwood et al. 2005). Именно малярии посвящены первые модели распространения инфекций, положения которых используются в эпидемиологии до сих пор (Smith et al. 2012). 

Климатические условия сильно влияют на передачу малярии, и модели распространения этого заболевания сейчас учитывают погодные данные (Hoshen and Morse 2004). Возникновение и исчезновение малярии также в большей степени зависит от влажности, чем от температуры (Parham and Michael 2010), поскольку малярийные комары размножаются в сезон дождей (Pascual et al. 2008). Тем не менее, на большие расстояния инфекцию переносят заражённые люди: там, куда они приезжают, от них заражаются комары, даже если погодные условия этому не способствовали (Wesolowski et al. 2012)

Синий кластер: главные обзоры о сезонности

В этом кластер попали главные публикации о влиянии сезонности на распространение вирусов. 

Altizer et al. (2006) считают, что на распространение инфекций влияют: сезонные изменения в том, как ведут себя носители вируса, и в количестве их контактов с уязвимым населением; периоды размножения носителей вируса; сезонные колебания иммунитета.

Так, грипп и респираторные инфекции распространены в зимние месяцы года, когда дети постоянно контактируют в школе, а пример малярии, описанный выше, иллюстрирует фактор размножения носителей. В случае с иммунитетом, выработка антител зависит от выработки мелатонина, а она ниже при коротком световом дне (Dowell 2001); зимой также ниже выработка витамина D, что негативно сказывается на иммунитете (Cannell et al. 2006).

Grassly and Fraser (2006) добавляют к этой классификации фактор выживания вируса вне организма носителя. Это зависит от влажности, температуры, воздействия солнечных лучей, кислотности и солёности среды.

Например, ротавирусы и нововирусы выживают в низких температурах, поэтому пик заболеваемости гастроэнтеритом приходится на зимние месяцы. Вирус гриппа дольше держится в воздухе в холодный период, когда влажность низкая, особенно в помещениях, и частицы аэрозоля с вирусом не оседают в каплях воды.

Одним из ярких и хорошо изученных примеров сезонного заболевания является корь. Её моделирование имеет давнюю историю, эпидемии кори симулируются стохастическими моделями (Earn et al. 2000), которые отражают частые затухания, перемежающиеся нерегулярными крупными эпидемиями (Ferrari et al. 2008). Более общие модели позволяют также оценить, как число людей без иммунитета влияет на последствия эпидемии: либо новую вспышку болезни спустя какое-то время, либо затишье, когда эпидемия «пропускает ход» (Stone, Olinky, and Huppert 2007).

Серый кластер: грипп

В этом кластере собраны эмпирические исследования, посвящённые эпидемиям гриппа. Как показывают Dushoff et al. (2004), динамику заболеваемости гриппом могут объяснить даже незначительные сезонные факторы.

Один из самых известных видов гриппа является грипп А. На передачу вируса гриппа и его выживание во внешней среде влияет влажность воздуха – относительная (Lowen et al. 2007) и абсолютная (Shaman and Kohn 2009; Shaman et al. 2010). В регионах с умеренным климатом абсолютная влажность имеет выраженный сезонный цикл, суше всего воздух зимой, поэтому в Северном полушарии сезон гриппа длится с ноября по март, а в Южном – с мая по сентябрь. 

Но не всегда сезонные эпидемии объясняются влажностью. Nelson and Holmes (2007) в обзоре приводят свидетельства действия других факторов. Например, у водоплавающих птиц эпидемии гриппа случаются и в августе-сентябре, что связано, скорее всего, с возрастающей плотностью стай перед миграцией и отсутствием иммунитета у птенцов. В тропиках грипп присутствует круглогодично несмотря на тёплый влажный климат, хотя пик заболеваемости иногда приходится на сезон дождей, но систематических данных для изучения гриппа в тропиках пока недостаточно. 

Авторы также упоминают фактор мобильности (Balcan et al. 2009) и тот факт, что пространственное распространение вируса соответствует рабочим маршрутам больше, чем просто географической близости населённых пунктов (Viboud et al. 2006), хотя на локальном уровне грипп всё-таки в основном переносят школьники.

Светло-голубой кластер: изменения климата

Тематически к этому кластеру принадлежит и самая популярная публикация на карте, связанная с воздействием регионального изменения климата на здоровье человека (Patz et al. 2005). Авторы статьи утверждают, что многие распространённые болезни связаны с изменением климата, от сердечно-сосудистых болезней, вызванных тепловыми волнами, до недоедания в результате неурожаев, и инфекционных заболеваний.

Относить возникновение или повторное появление заболевания на счёт изменения климата проблематично, так как почти нет высококачественных лонгитюдных данных, чтобы отделить влияние климатических изменений от влияния других факторов. Однако авторы отмечают, что глобальное потепление уже становится причиной большей заболеваемости и смертности в очагах инфекций. Регионы, которые особенно уязвимы к распространению инфекций в связи с изменениями климата, это умеренные широты, где потепление проявится особенно заметно; регионы по берегам Тихого и Индийского океанов, которые испытывают воздействие климатической аномалии Эль-Ниньо; а также Африка к югу от Сахары, где расползание городов и городского острова тепла может усугубить эпидемиологическую обстановку.

Gubler et al. (2001) делают большой обзор о влиянии климатических изменений на заболевания, которые распространяются насекомыми и грызунами. Исследователи подчёркивают, что инфекции переносятся из тропических стран в места с умеренным климатом и выживают в них. 

В свете этого важны другие исследования кластера, посвящённые отдельным вирусам. Это арбовирусы, которые распространены в тропиках и от членистоногих через диких животных и скот передаются человеку (Weaver and Reisen 2010). Это также вирус лихорадки денге (Lambrechts et al. 2011; Wearing and Rohani 2006), эпидемический потенциал которого возрастает в условиях глобального потепления (Patz et al. 1998). Обсуждаются и другие тропические инфекции: японский энцефалит (Misra and Kalita 2010), вирус Зика (Barrera, Amador, and MacKay 2011), вирус лихорадки Западного Нила (Kilpatrick et al. 2006). Все они вызывают лихорадку, головную боль и другие специфические симптомы, а также в разной степени серьёзные последствия. 

Вирус лихорадки Западного Нила, например, быстрее передаётся в жаркий период (Hartley et al. 2012), в том числе потому, что люди носят более открытую одежду, и предпочитают проводить время на улице после захода солнца, когда комары активны. Особенно часто с комарами контактируют те, у кого нет кондиционера или причин оставаться дома вечером – например, нет компьютера или телевизора (Reisen 2013). Таким образом, не только сезонные и климатические, но и социально-экономические факторы играют важную роль в распространении заболеваний.

На странице 2 мы даём ссылки на общие обзоры про влияние климата на распространение инфекций и описываем наши данные.

]]>
850
Летучие мыши, вторжение в природу и новые пандемии. Часть 2 http://pandemicsciencemaps.org/ru/habitat2-ru?utm_source=rss&utm_medium=rss&utm_campaign=habitat2-ru Fri, 15 May 2020 01:19:01 +0000 http://pandemicsciencemaps.org?p=738 В первой части обзора мы обсуждали, являются ли летучие мыши, или рукокрылые, «исключительно» активными переносчиками вируса, и как события внешней среды влияют на их способность заражать других животных и людей. Как выяснилось, по большей части рукокрылые опасны только тогда, когда их иммунитет ослаблен из-за стресса. Мы также убедились, что в зависимости от условий внешней среды потенциальные получатели вируса иногда особенно перед ним уязвимы.

Сегодня мы изучим, как вмешательство человека в природу может усугубить новые эпидемии, откуда их ждать, и что делать, чтобы им противостоять.

В последние 40 лет исчезло около трети лесного массива Юго-Восточной Азии. Тропические леса вырубали на древесину, под сельскохозяйственные земли и стихийное расширение городов (Afelt, Frutos, and Devaux 2018). Вместо лесных территорий появляются дома, амбары, огороды, фермы, сады и перелески разной плотности. Иногда по соседству с животноводческой фермой организуют фруктовый сад – это ещё один источник дохода для фермеров, к тому же деревья создают тень.

Оставшийся после вырубки лес называется фрагментированным, то есть разбитым на сравнительно небольшие изолированные участки. Один из типов фрагментации – так называемая перфорация леса (Рисунок 1).

Рисунок 1. «Перфорированный» лес в Новой Англии, США. Источник

Леса Верхней Гвинеи в Западной Африке также сократились на треть с 1975 по 2013 год, при том что до 1975 года было потеряно 84% их прежней площади. На месте тропического леса здесь высаживают монокультурные плантации масличной пальмы. Похожим образом вырубаются леса Амазонки под масличную пальму и сахарный тростник. Если ради новых плантаций не рубят лес, то, скорее всего, их организуют на месте ферм, а уже под эти фермы вырубаются лесные массивы.

Вспомним теперь, что генипавирус Нипах, вызывающий у человека опасный энцефалит, так же как и коронавирусы SARS-CoV и SARS-CoV-2, вирус нынешней пандемии, перескочили на человека от животных именно в Азии. Филовирус Эбола, который вызывает геморрагическую лихорадку и в половине случаев летальный исход, распространился на человека в Западной Африке (Рисунок 2). И переносчиками всех этих вирусов являются летучие мыши. Как показывают исследования, это не просто совпадение. 

Рисунок 2. Фрагментация лесов в Центральной (а, b) и Западной Африке (c, d)
Верхние изображения показывают ситуацию на 2000 год, нижние – на 2014-й. Тёмно-зелёным цветом отмечены нетронутые лесные массивы. Жёлтая окраска на карте обозначает край леса. Оранжевый цвет (особенно заметен на изображении b) соответствует зонам перфорированного леса.
Жёлтыми треугольниками на карте обозначены первые выявленные случаи заражения человека вирусом Эбола, после которых начинались вспышки вируса с 2004 по 2014 годы. Эти первые случаи вызваны передачей вируса от животных человеку, и большинство из них произошло в зонах растущей фрагментации леса.
Источник: Rulli et al. (2017). Кликните на картинку, чтобы смотреть в полном размере (открывается в новой вкладке)

Когда вырубают лес, среда обитания рукокрылых истощается. Их иммунитет снижается из-за нехватки питания и необходимости подолгу искать еду – а, как мы помним, именно в таком состоянии летучие мыши начинают распространять инфекции. 

Обустроенные человеком зоны внутри и на границе леса привлекают разнообразных летучих мышей. В фруктовых садах и на пальмовых плантациях находят пищу плодоядные крыланы. На свет жилищ слетаются насекомые, которые привлекают насекомоядных летучих мышей, а привыкшие жить в пещерах виды рукокрылых перемещаются в заброшенные дома и амбары (Plowright et al. 2015; Afelt et al. 2018).

Мы обычно думаем, что из-за вырубки лесов некоторые виды животных просто вымирают. Это не всегда так. Рукокрылые, лишённые места обитания и источника пищи, ищут их везде, в том числе рядом с людьми. Разнообразная застройка бывших лесных территорий только способствует разнообразию вирусов в непосредственной близости к человеку.

Представим теперь, как развиваются события на ферме в Юго-Восточной Азии. Пусть там разводят свиней и одновременно выращивают манго, а ветки деревьев нависают прямо над загоном для свиней, чтобы создать дополнительную тень. По ночам голодные крыланы – переносчики вируса – залетают на ферму и поедают плоды. Недоеденные фрукты с оставшимися на них заражёнными слюной и испражнениями падают на землю. На следующий день их доедают свиньи, у которых нет иммунитета к вирусу. Через какое-то время происходит вспышка болезни у свиней, а затем и у контактирующих с ними фермеров. Перед этим часть заражённых поросят уже были проданы в другие регионы страны, где от них заразились другие люди. Это – история первой крупной вспышки вируса Нипах в Малайзии в 1998-99 годах (Pulliam et al. 2012).

Есть и другая версия того, почему именно в те годы вирус Нипах был занесён на фермы. Именно тогда из-за подсечно-огневого способа вырубки леса Юго-Восточную Азию накрыл густой смог. На это наложилась засуха из-за температурной аномалии Эль-Ниньо, и в результате оставшиеся деревья очень мало плодоносили. Поэтому в поисках пропитания на север устремились ранее туда не залетавшие виды крыланов, которые и заразили фруктовые деревья малазийских ферм (Chua, Chua, and Wang 2002). Впоследствии, однако, выяснилось, что случаи заражения наблюдались ещё до установления смога и засухи (Pulliam et al. 2012). Поэтому можно считать, что вирус распространился не от мигрирующих, а от местных крыланов, а Эль-Ниньо усугубило возникающую эпидемию – но вызвала её вырубка лесов и нехватка питания у рукокрылых. 

На Рисунке 3 отражены ранее упомянутые пути передачи вируса Нипах:

  1. Крыланы – естественные носители вируса – пьют сок финиковой пальмы и оставляют в нём капли биологических жидкостей.
  2. Сок пальмы продают или оставляют бродить – но не подвергают обеззараживающей тепловой обработке. 
  3. Традиционно, сок пьют в первые несколько часов после сбора. Так или иначе, в среде, насыщенной сахаром, вирус выживает достаточно долго и передаётся человеку.
  4. Крыланы прилетают к плодовым деревьям, расположенным рядом со свинофермой. Они едят фрукты, оставляя на них биологические жидкости.
  5. Недоеденные фрукты падают на землю, где их подбирают и заражаются свиньи и другие животные.
  6. Заразившихся свиней забивают и/или продают.
  7. Человек ест заражённую свинину.
  8. При близком контакте вирус Нипах может передаваться от человека к человеку. (Есть гипотеза, что от человека к человеку передаются не все штаммы вируса. Тем не менее, недавние эпидемии в Бангладеш и Индии показали некоторое число заражений от больных людей. См. Singh et al. 2019.)
Рисунок 3. Пути передачи вируса Нипах
Источник: Singh et al. (2019). Кликните на картинку, чтобы смотреть в полном размере (открывается в новой вкладке)

Итак, наиболее важным следствием вырубки лесов становится учащение контактов рукокрылых с домашними животными и людьми.

В случае коронавируса MERS-CoV и вызванной им эпидемии ближневосточного респираторного синдрома, передача вируса человеку впервые произошла не в тропической зоне фрагментированного леса, а при контакте с верблюдами (а верблюды, вероятно, подхватили вирус от гладконосых летучих мышей). Однако вирус также был найден у другого вида мышей, футлярохвостых, которые жили в руинах домов. Инфекцию могли разносить и другие домашние животные, контактировавшие с летучими мышами (Afelt, Frutos, and Devaux 2018).

Читайте на странице 2 о том, какие прогнозы строят исследователи насчёт следующей передачи вируса от летучих мышей человеку.

]]>
738
Летучие мыши, вторжение в природу и новые пандемии. Часть 1 http://pandemicsciencemaps.org/ru/habitat-ru?utm_source=rss&utm_medium=rss&utm_campaign=habitat-ru Mon, 11 May 2020 15:50:00 +0000 http://pandemicsciencemaps.org?p=689 Истоки пандемии нового коронавируса принято видеть в контакте с заражёнными животными на рынке в Ухане. Но подобные рынки – далеко не единственное место, где носители опасных вирусов встречаются с людьми и другими животными, не имеющими иммунитета к таким инфекциям. Контакты людей с новыми вирусами и, соответственно, вспышки заболеваний связываются, в том числе, с «растущим вторжением человека в дикую природу, изменением ландшафтов». Что именно стоит за этими словами? Как вмешательство людей в природу влияет на появление новых пандемий?

Разбираться с этим вопросом мы будем на примере эпидемий, распространившихся от летучих мышей. Для обзора мы выполнили систематический поиск литературы в базе данных научных публикаций Scopus и нашли публикации, посвящённые летучим мышам как носителям вирусов. (Описание данных и визуализацию научной карты смотрите на странице 3 обзора.) 

Результаты поиска разбиваются на блоки в соответствии с основными группами вирусов, переносчиками которых являются летучие мыши. Помимо вирусов бешенства и гриппа, это коронавирусы, вызывающие острые респираторные синдромы; филовирусы, такие как Эбола и Марбург, вызывающие геморрагическую лихорадку; и генипавирусы, такие как Хендра и Нипах, приводящие к опасному энцефалиту.

Оказалось, что дискуссия про воздействие человека на природу и про следующее за этим распространение новых вирусов уже давно идёт в научной литературе – в связи с генипавирусами.

Это неудивительно, поскольку вызванные генипавирусами вспышки заболеваний произошли раньше, чем знаменитые эпидемии коронавирусов.  Так, генипавирус Хендра впервые был замечен в Австралии в 1995 г., генипавирус Нипах – в Малайзии в 1998-9 гг. (Mackenzie et al. 2001).

С точки зрения передачи вируса, важная разница в том, что коронавирусы живут в летучих мышах, тогда как генипавирусы распространяются крыланами, или летучими лисицами (Рисунок 1). Это два разных подотряда отряда рукокрылых. Отличаются они, в частности, размером и рационом. Летучие мыши – небольшие и в основном насекомоядные, хотя среди них встречаются и хищники, и вампиры. Летучие лисицы в размахе крыльев достигают полутора метров, а питаются фруктами, нектаром, пыльцой и реже – насекомыми. (Запомним отличия в рационе, поскольку пища – это важный канал распространения инфекций.)

В обзоре мы используем термин «рукокрылые» и более распространённое название «летучие мыши» как равнозначные. Когда речь будет заходить о крыланах или специфических видах летучих мышей, мы будем отмечать это отдельно.
В основном мы будем обсуждать случаи распространения генипавирусов, которые переносятся крыланами. Там, где это уместно, мы также привлекаем примеры эболавирусов и коронавирусов. Все они обладают пандемическим потенциалом (Luby 2013; Simons et al. 2014). Вызываемые ими заболевания характеризуются высокой смертностью: для энцефалита от вируса Нипах это 40–75% (Singh et al. 2019), для лихорадки Эбола в среднем 50%, а в прошлом – до 90% (Ebola Virus Disease).

Этот обзор разбит на две части. Сегодня мы обсудим, являются ли летучие мыши «исключительно» активными переносчиками вируса, и как события внешней среды влияют на их активность.

Почему всё внимание приковано именно к летучим мышам?

В науке ведётся спор о том, являются ли летучие мыши «исключительными» переносчиками вируса. Одна сторона дискуссии утверждает, что людей наиболее часто инфицируют определённые виды животных, в том числе рукокрылые (Luis et al. 2013). Иными словами, на один вид летучих мышей приходится сравнительно больше зоонозных инфекций, чем на один вид любых других животных.

Оппоненты этой гипотезы считают, что все животные распространяют вирусы в равной степени активно. Различается только видовое разнообразие животных, а вместе с этим – разнообразие переносимых вирусов. Чем больше существует видов какого-то животного и, соответственно, чем больше различных вирусов этот тип животного переносит, тем больше вероятность, что какой-то из вирусов от этой группы животных перекинется на людей.

Именно вторую точку зрения подтверждает апрельская публикация Mollentze and Streicker (2020), основанная на наиболее полном на сегодня массиве данных о связи вирусов и их носителей. Согласно исследованию, рукокрылые почти не отличаются от других животных в том, с какой частотой они передают человеку вирусы определённого типа (за исключением вируса бешенства). Опасность, которую несут животные-переносчики, это статистическая закономерность:

Чем больше существует видов одного животного, тем больше разных вирусов эти животные переносят, и, соответственно, тем больше вирусов передаётся от них людям. Летучие мыши – не исключение.

На Рисунке 2 видно, что эта закономерность сохраняется для разных видов животных. Больше всего разнообразных видов среди грызунов, и они же – самые активные переносчики вирусов людям. Видов летучих мышей примерно в два раза меньше, поэтому и вирусов они переносят пропорционально меньше, и человеку от них передаётся меньше болезней.

Хотя летучие мыши, по-видимому, не исключительны в смысле передачи вируса человеку, с физиологической и экологической точек зрения они необыкновенно предрасположены к переносу вирусов.

У рукокрылых очень сильная иммунная система, предположительно, связанная с их уникальной среди млекопитающих способностью к длительному полёту (O’Shea et al. 2014). Поэтому вирусы, попадая в их организм, обычно не вызывают заражения и болезни, а генипавирусы, вероятно, даже почти не реплицируются – то есть редко размножаются, поражая новые клетки (Halpin et al. 2011). При этом инфекции остаются в организме, не проявляясь.

Кроме того, рукокрылые спят в пещерах, где иногда собираются тысячи особей разных видов, и если кто-то из них болеет, то заразиться могут очень много мышей. Тем более, что в пещерах мыши живут очень плотно, нависая друг над другом и, соответственно, орошая друг друга заражёнными биологическими жидкостями. В такой опасной среде каждый отдельный контакт с вирусом редко приводит к заражению, однако когда очень многие особи распространяют вирус, шанс заразиться возрастает многократно (Plowright et al. 2015).

В свою очередь, вирусы в ходе эволюции адаптировались к сильным иммунным защитам рукокрылых (см. обзор в Calisher et al. 2006). Бытует гипотеза, хотя и не проверенная экспериментально, что в силу такой адаптации инфекция оказывается очень серьёзной и даже смертельной, когда передаётся от летучих мышей другим переносчикам или человеку (Luis et al. 2013).

Читайте на странице 2, почему летучие мыши, будучи настолько активными переносчиками вирусов, не слишком часто заражают человека.

]]>
689